Decomposition of surface EMG signals.

نویسندگان

  • Carlo J De Luca
  • Alexander Adam
  • Robert Wotiz
  • L Donald Gilmore
  • S Hamid Nawab
چکیده

This report describes an early version of a technique for decomposing surface electromyographic (sEMG) signals into the constituent motor unit (MU) action potential trains. A surface sensor array is used to collect four channels of differentially amplified EMG signals. The decomposition is achieved by a set of algorithms that uses a specially developed knowledge-based Artificial Intelligence framework. In the automatic mode the accuracy ranges from 75 to 91%. An Interactive Editor is used to increase the accuracy to > 97% in signal epochs of about 30-s duration. The accuracy was verified by comparing the firings of action potentials from the EMG signals detected simultaneously by the surface sensor array and by a needle sensor. We have decomposed up to six MU action potential trains from the sEMG signal detected from the orbicularis oculi, platysma, and tibialis anterior muscles. However, the yield is generally low, with typically < or = 5 MUs per contraction. Both the accuracy and the yield should increase as the algorithms are developed further. With this technique it is possible to investigate the behavior of MUs in muscles that are not easily studied by needle sensors. We found that the inverse relationship between the recruitment threshold and the firing rate previously reported for muscles innervated by spinal nerves is also present in the orbicularis oculi and the platysma, which are innervated by cranial nerves. However, these two muscles were found to have greater and more widespread values of firing rates than those of large limb muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

Identification of Surface EMG Signals Using Wavelet Packet Entropy

This paper introduces a novel and simple algorithm to extract the feature from Surface EMG signals recorded from the skin surface over forearm muscles. Surface EMG signal is decomposed into 16 frequency bands (FB) by wavelet packet transform (WPT), and then wavelet packet entropy (WPE) of every surface EMG signal is calculated by its relative wavelet energy in every FB. WPE is regarded as the f...

متن کامل

Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been deve...

متن کامل

An Android Application for Estimating Muscle Onset Latency using Surface EMG Signal

Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...

متن کامل

Comparative Study of Different EMG Signal decomposition Techniques

EMG signals are electromyogram signals generated by firing of MUs (motor units) in muscle fibers. The decomposition of EMG signal of a muscle provides useful information for the diagnosis of neuro-muscular diseases by physician and neurologist. In decomposition of EMG signal different MUAPs (Motor Unit Action Potentials) are classified into different categories. This paper gives a review of dif...

متن کامل

An Approach to Decomposition of Muscle and Nerve Signals

This paper considers the decomposition of surface electromyograms (SEMG) using higher-order statistics (HOS). Modelling surface EMG by a MIMO system whose inputs in the form of innervation pulse trains are considered independent identically distributed (i.i.d.) random white noise, the system identification methods based on higher-order statistics may be introduced. We disclose how a two-phase p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 96 3  شماره 

صفحات  -

تاریخ انتشار 2006